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DEFINITION OF SYMBOLS 

C 

CIO 9 czo 

D 

F 

FL 

FB 

FN 

FT 

g 

k 

Li 

L2 

L3 

L. F. 

m 

N 

i 

T 

Proportionality constant between the crushing force and the stroke due 
to crushing during onset. 

Crushing force of the uphill and downhill legs , respectively, after 
onset. 

Landing gear diameter. 

Total force acting on a foot. 

Component of total force acting along the leg. 

Component of total force acting normal to the leg. 

Component of total force acting normal to the lunar surface. 

Component of total force acting along the lunar surface. 

Gravitational acceleration of the moon. 

Vehicle's radius of gyration with respect to the center of gravity. 

Distance from the center of gravity to the first foot measured normal to 
the longitudinal axis. 

Original distance (before crushing) from the center of gravity to the 
feet measured along the longitudinal axis. 

Distance from the center of gravity to the second foot measured norm31 
to the longitudinal axis. 

Deceleration load factor based on earth gravity for landing on a level 
surface with all legs contacting simultaneously, ( F  

Vehicle's mass. 

N i  i- FN2)'We ' 

Number of legs. 

Rate of sliding along the lunar surface. 

Stabilization rocket motor thrust. 

V 



5 3  

At 

vV 

vH 

vN 

vT 

w 

we 

X 

Y 

a! 

P 

6 

610, 6 2 0  

Stabilization rocket motor burning time. 

Integrating time interval. 

Vertical component of velocity vector, positive downward. 

Horizontal component of velocity vector, positive away from hill. 

Velocity normal to the lunar surface, - 3;. 

Velocity parallel to the lunar surface, 2 .  

Weight of vehicle at the moon, mg, 

Earth weight of the vehicle landed on the moon. 

Center of gravity coordinate along the lunar surface. 

Center of gravity coordinate normal to the lunar surface. 

Angle between the vertical and the line from the center of gravity to 
the foot. 

Angle between the total force and the component of total force- along 
the leg. 

The stroke parallel to the longitudinal axis due to crushing. 

Designed onset stroke, or  stroke during buildup of the crushing force 
to the maximum value, for the first and second legs, respectively 
(unless otherwise noted, this onset stroke has been assumed zero). 

Vehicle attitude and attitude rate,  positive counterclockwise. 

Slope of lunar surface from the horizontal, positive counterclockwise. 

Angle between the total force and the component of total force normal to 
the lunar surface. 

Limiting value of p,  or  angle of friction. 

Coefficient of friction. 

I' 

V i  



(a2)+ = 0. Dynamic stability margin; the value of a2 at the instant the vehicle's 
rotation changes from negative to positive. 

Subscripts : 

I Fir st leg. 

2 Second leg. 

Pm Previous maximum. 

(n  - 1) Value at previous time step. 

vii 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D - 2001 

TOUCHDOWN DYNAMICS ANALYSIS OF 
SPACECRAFT FOR SOFT LUNAR LANDING 

BY 

Robert E. Lavender 

SUMMARY 

Results of analytical touchdown dynamics investigations are- presented which 
were conducted to obtain the influence of various lunar and configuration design parameters 
on the touchdown dynamic stability ofspacecraft for  use in soft landing payloads on the 
moon. Parameters used in the analysis include the local lunar slope, coefficient of 
friction, initial touchdown vertical and horizontal velocity components , vehicle weight 
and radius of gyration, height of the center of gravity, displacement of the center of 
gravity from the vehicle's longitudinal axis, thrust of stabilization rocket motors, 
crushing force of energy absorbing material in the leg struts, and number of legs. 

Results show that the lunar 'slope, which was varied up to 40 degrees, and the 
coefficient of friction have a large effect on the landing gear diameter required for touch- 
down stability. 
have a large influence on the required landing gear diameter. Variations in the height of 
the center of gravity, displacement of the center of gravity from the vehicle's longitudi- 
nal axis, vehicle weight and radius of gyration, and crushing force of the energy absorb- 
ing material have less  influence on the landing gear design. 

The initial touchdown vertical and horizontal velocity components also 

The use of a stabilization rocket motor is highly effective in providing adequate 
touchdown dynamic stability. Significant reduction iil landing gear diameter can be re- 
alized with the use of such a motor. With a properly chosen scheme for providing motor 
ignition, tumbling of the vehicle under severe conditions of lunar slope and friction can 
be prevented with a motor of relatively low total impulse. 
ing time is required with the thrust level on the order of the configuration's earth weight. 

High thrust for a short burn- 
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INTRODUCTION 

In the overall considerations of the design and performance of space vehicle sys- 
tems intended to soft land payloads on the moon, analysis of touchdown dynamic motion 
of the landing stage is an important part. It would indeed be a pity for the vehicle sys- 
tem to perform successfully all phases of flight to the moon only to result in a failure 
during the few seconds of motion remaining after initial touchdown. Equations have been 
derived for two-dimensional touchdown dynamic analysis including crushing of energy 
absorbing material in the legs and sliding of the foot pads along the lunar surface. 

Vehicles with legs a re  assumed in order to provide sufficient moment a rm for 
the restoring forces necessary to prevent tumbling. A column of aluminum honeycomb 
material is assumed located within each leg which absorbs energy with essentially a 
constant load-stroke relationship and without rebound (Refs. i and 2 ) .  While other 
methods of energy absorption may be more efficient on a ft-lbflb basis such as a col- 
lapsible shell (Ref. 3) or  frangible tube (Ref. 41, they may be more difficult to apply 
to an actual landing gear designed for simple, reliable operation. Various methods of 
obtaining energy dissipation are considered in References 5 to 10. 

The author is indebted to Mr. John D. Capps, Computation Division, who pro- 
grammed the equations for the GE 225 digital computer and supported the computation of 
numerical results. 

MATHEMATICAL MODEL 

Equations for the analysis were developed corresponding to the two-dimensional 
touchdown dynamics model shown in Figure i. This model is adequate for the analysis 
of either three - or four legged vehicles. Inelastic, crushable material to absorb energy 
during touchdown is assumed located within the legs. Additional energy is absorbed as 
a result of sliding action of the feet along the lunar surface. Motion takes place in a 
plane such that two legs contact the surface simultaneously for the four-legged vehicle. 
For the three-legged vehicle, either the double leg or  single leg can initially touchdown. 
It is assumed that the vehicle has feet of sufficient area to prevent penetration of the 
lunar surface. If the bearing strength of the lunar surface is determined later to be 
quite low for considerable depth, then large pontoons rather than foot pads must be at- 
tached to the legs if burying the vehicle is to be avoided. 

From Newton's second law, the equations of motion are 

m y  = FNI + FNz - W COS 0 - (Ti  + Tz) COS (p - 0) 

2 



mj;  = FTi + FTZ - W sin 0 + ( T i +  T,) sin ( q  - e)  

m k 2 v  = (FTi) ETz) Y + FN2 ~3 - FNi XI + Ti Li' 

( 2 )  

( 3 )  T2 L3'. 

The accelerations obtained from the above equations are integrated numerically with the 
use of a digital computer. 

The force along the first leg is obtained by 

FLi = 0 

Equation (4) expresses the fact that the force along the leg is zero i f  the leg has not yet 
reached the surface, and Equation ( 5) the fact that the leg has previously been crushed 
but is now off the surface. If the leg is crushing but the length crushed is less than the 
designed onset length, then the crushing force is assumed proportional to the length 
crushed as given by Equation ( 6 ) .  The ckmhing force buildup during onset can be ob- 
tained from a column of honeycomb material, for example, by forming a wedge at one 
end. Equation (7 )  represents the crushing force after onset as a constant force char- 
acteristic of honeycomb material. The force along the second leg is determined in the 
same manner. These equations determine the force along the leg except when the crush- 
ing has stopped and the vehicle rotates as a rigid body. 
force along the leg is less than the crushing force and is obtained in a manner described 
later. 

During such a rotation, the 

The length crushed and crushing rate for the legs are obtained by 

6i = L, + Li tan ( c p  - e)  - y sec ( c p  - e )  ( 8 )  

6, = L, - L3 tan ( c p  - 0)  - y sec ( c p  - 0) ( 9) 

c 
{ 

6 ,  = - sec2 (q - e) S; cos ( c p  - e)  + ry sin ( c p  - e) - Lij  +} 
i2 = -sec,(cp-e)  ~ ; c o s ( c p - e ) + [ y s i n ( c p - o )  +L3j+}. 

As long as a leg is crushing and also the foot is sliding along the surface, the 
tangential and normal forces are readily computed. 
is given by: 

The sliding rate along the surface 

3 
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Si = g + y 4  - 6 .  sin ( 4 0  - e ) ,  (12) 
1 

where the subscript '(iff is I or  2 for the first or second leg, respectively. Then: 
ii 

7 s. # 0. ( 13) - 
pi - - P O  1 

pi = q - e + p i .  ( 14) 

- Fi - FLi sec p . 
FNi = F. cos p. . 

i 

1 1 

FTi = F. sin pi - 
1 

Thus the normal and tangential forces a re  determined, as  long as crushing and 
sliding a re  present, and the accelerations can be obtained from the equations of motion. 

Stabilization rockets can be considered in the analysis and a re  represented by: 

Ti = Ki  

T2 = 0 6 2 < 0 ,  t r t  . 
2b 

This representation provides sufficient flexibility to account for a number of rocket 
stabilization schemes. 

Whenever the sliding rate as obtained from Equation (12) changes sign, interpola- 
tion is made to determine the time a t  which the foot stops sliding. 
sliding, it remains a t  rest unless the computed angle 
During the time that a foot is at rest ,  with the leg still crushing, the normal and tangen- 
tial forces a re  determined by an iterative procedure. 
ces a re  first obtained by Equations (16)  and (17) for various assumed values of p. 
Equations ( 2 )  and ( 3 )  are then solved for 2 and $ corresponding to each value of p 
assumed. Now from equation (12)  with a foot at res t ,  

Once a foot stops 
p,  exceeds the angle of friction. 

The normal and tangential for- 
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and, by differentiating, 

where 8. may be taken as 
1 5 - 5  .. - i i ( n -  i )  
6i A t  

- 

Thus the value of p is determined by iteration such that k' and $ obtained from 
Equations (2)  and (3) satisfy Equation (24) .  Once the p has been determined, its ab- 
solute value must be compared with the angle of friction. If it exceeds the angle of fric- 
tion, p is taken to be 

(26) 
where ps i s  the value determined by the iteration. 
slide again. The normal and tangential forces a re  determined from Equations (16) and 
( 17) by using the p from Equation ( 26) , and the accelerations a re  obtained from Equa- 
tions (I) , (2), and (3 ). At subsequent time intervals, p is computed by Equation ( 1 3 )  
as long as sliding continues. 

E.l* P = IP*1 Po 7 

In this case the foot has started to 

As the first leg crushes, the crushing rate determined by Equation ( I O )  is pos- 
itive. When the crushing rate changes from positive to negative, the time at which the 
crushing stops is determined by interpolation, and the force along the leg can no longer 
be determined by Equations (6)  o r  (7). 
about the first foot. 

The vehicle may then rotate as a rigid body 
Sliding of the first foot may o r  may not be present. From Figure I, 

y = ( L ~  - 6,) cos ( c p  - e )  + Li sin ( c p  - 0) , (27) 

and, when the crushing rate is zero, 

j, = - ( L ~  - 61) + sin ( c p  - e) + L, + COS ( c p  - e) .  (28) 

But from Figure I, 

xi = L, COS ( c p  - e )  - ( L ~  - 6,) sin ( c p  - 0)  , (29) 

, 



If sliding is present, the value of pi is known from equation ( 13) and the normal 
and tangential forces a re  

FNi = FLi sec p i  cos pi (32 )  

FTi = FLi sec pi sin pl. ( 33) 

Substitution of Equations (31) , (32) , and (33) into Equations ( 1) and ( 3 )  results in two 
equations from which the unknowns id and F may be obtained: L1 

m q q - F L 1 s e c p 1 c o s p 1  = F N 2 - W c o s 8 + m y + 2 -  ( T i + T 2 )  COS (cp-e) , (34)  

mk2 $ + [sec pi (xi cos pi - y sin pi)] FLi = F y + FN2x3 + Ti Lit - T2 L,' . (35 )  T2 

If the value of FLi obtained is positive, the vehicle rotates as a rigid body about the first 
foot (with sliding present) and the proper forces and accelerations a re  determined. 
However, if  this value is negative, the first foot is off the surface, and the forces are 
set  equal to zero. The values of $ q d  F L ~  obtained from Equations (34 )  and (35) a re  
therefore not valid. Equations ( 1) , ( 2 )  , and ( 3 )  are then solved for the accelerations 
with the forces on the first foot set to zero. If the second foot has not yet reached the 
surface, the vehicle is thus in free flight. 

If sliding is not present, then the value of pi is not known from Equation (13)  and 
must be obtained in another manner. For this case the vehicle is in pure rotation about 
the first foot without sliding or  crushing. In such a case,  

Differentiating Equation (29) with the crushing rate zero, 

21 = - y @  c 37) 

and 

Substitution of Equations (31) and (38) into Equations ( 1) , ( 2) , and ( 3 )  yields three 
equations from which the three unknowns $ , FTi, and F may be obtained: N I  

FN1 - mxi$  = - FN2 - m y o 2  + W cos 8 + ( T i  + T2) cos ( c p  - e ) .  (39)  

FTi + m y $  = - FT2 - 

xi FNi - y FTi + m k2 = y FT2 + x3 F 

+ W  sin 8 - ( T i +  T2) sin ( c p  - e) .  (40) 

(41) + Ti Lll - Tz LS1 
N2 

6 
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If the value of F 
value for pi is 

obtained is positive, the vehicle rotates about the first foot. The N I  

-1 FTI - pi = tan ~ . 
' N l  

If lpil > po, pi is set  equal to po with the sign of pi the same as given from Equation 
(42). 
(40) ,  and (41) are not valid. 
accelerations are determined using Equations ( 34) and (35). If the value of F N ~  obtain- 
ed is negative, the foot is off the surface and the forces are  set equal to zero. 

stops crushing. In this case, F L ~  is known, and & is determined by the iterative pro- 
cedure previously described. If the second leg stops crushing and the foot is still slid- 
ing, & is known and F L ~  is obtained (along with ;b ) from the solution of two equations 
similar to Equations (34) and (35). In this case, 

The foot has thus started to slide, and the values obtained from Equations (39) , 
However, since pi is now known, the proper forces and 

After the second leg contacts the surface, the sliding may stop before the leg 

- mx3;b - FL2 sec p2 cos & = FNl - W cos 8 +my$ '  - (Ti  + T2) cos ( q  - e )  
(43) 

mkz - [ sec p2 (x3 cos 1-12 + y sin 1-12)] FL2 = y FTl - xi FNi + Ti Li' - T2 L3' , 
( 44) 

where 

x3 = (L2 - t j 2 )  sin ( c p  - e)  + L, COS ( c p  - e) .  ( 45) 

Once F L ~  is abtained, the normal and tangential forces follow from Equations (16) and 
(17). Equations ( I)  and ( 2 )  provide the other accelerations required. 

When the second leg is not crushing and the foot is not sliding, three equations 
are  required from which ;b , FT2, and FN2 are  obtained: 

FN2 + mx3;b = - F~~ - my+'  + w case + ( T ~  -I- T') COS ( c p  - e ) .  

FT2 + my;b = - FTl + mx3q2  + W sin 8 - (Ti  + T2) sin ( c p  - e ) .  

c 46) 

(47) 

- x3FN2 - yFT2  + m k 2 v  

The foot remains at r e s t  as long as I does not exceed the angle of friction. 

From Figure I, it is seen that the vehicle tumbles about the first leg if the angle, 
ai, becomes negative; it tumbles about the second leg if  the angle a2, becomes negative. 
These angles'are given by 
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RESULTS AND DISCUSS1 ON 

The equations developed have been used to obtain touchdown dynamic results for 

An  example is shown in Figure 2 illustrating the manner 
spacecraft of a size compatible with delivery of logistic supplies to the moon using a 
Saturn V class launch vehicle. 
in which the landing gear spread required for stable performance is determined. For 
a given set of conditions, runs are made for a series of landing gear spreads. If the 
spread is too small, the vehicle tumbles and the rate of rotation is noted a s  the angle, 
a2, passes through zero. If the spread is larger than necessary, the vehicle's rotation- 
al rate changes sign as the vehicle's motion becomes stable. 
angle, a2; as the rotational rate goes through zero is a measure of the dynamic stability 
margin. 
rotation rate ($) curve and the stability margin (a2) curve. For a four-legged vehicle, 
the landing gear diameter required is 2L1 sec 45". Landing gear diameters determined 
in this manner are the minimum required with no safety margin. 

The magnitude of the 

The required landing gear spread is determined by the intersection of the 

The landing gear diameter required for landing on a 30-degree lunar slope is 
shown in Figure 3 as a function of the height to the center of gravity for several values 
of the coefficient of friction and radius of gyration. As expected, the landing gear dia- 
meter increases with increasing height to the center of gravity and with larger values 
for the coefficient of friction. Somewhat less obvious is the increased diameter required 
as the radius of gyration is increased. The corresponding landing gear ratio is present- 
ed in Figure 4. 

The required landing gear ratio for a typical vehicle is shown as a function of 
lunar slope in Figure 5. The results indicate, as expected, that the lunar slope has an 
important effect upon the landing gear spread required for stable touchdown. 

The friction coefficient appears to be one of the most important parameters 
which determine the landing gear spread required to achieve touchdown stability. As 
seen from Figure 6,  the landing gear ratio increases rapidly with increasing friction up 
to a coefficient of friction of about I. 0 and then levels off to an almost constant value. 
Since a friction coefficient of 0. 577 o r  larger is required merely to hold a vehicle ini- 
tially a t  rest on a 30-degree slope, the portion of the curve below this value is academic, 
since the vehicle gains sliding velocity and sooner or later would strike a boulder at high 
speed. It is important to design the foot pads to provide sufficient friction to stop the 
vehicle if  landings on such steep slopes are required. 

There are  two points of comparison between Figures 4 and 6 which have the same 
parameter values except €or vehicle weight and strength of crushable material. 
required landing gear ratio is the same at both these points of comparison even though 
the vehicle weight is different by 8,000 pounds. Thus it appears that the vehicle weight 
does not affect the landing gear spread required as long as the crushing strength is se- 
lected toprovide a given deceleration load factor. The crushing strength was selected 

The 
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based upon a 6 g (earth,) load factor for the vehicle landing on a level surface with all 
four feet contacting simultaneously. This result is as expected since the equations of 
motion could be made nondimensional through division by the vehicle's lunar weight. 
This was not done since the printout was desired in dimensional form. 

The downhill stability boundary has been determined for a typical vehicle as a 

For a given vertical velocity, the vehicle tumbles as the initial hori- 
function of the initial horizontal and vertical velocity components. 
ted in Figure 7. 
zontal velocity is increased beyond the stability boundary. 
velocity that can be tolerated increases from zero as the initial vertical velocity decreas- 
es for vertical velocities below about 8 meters per second. The upper boundary is of 
less interest since vertical velocities of I 1  to 14 meters per  second would produce large 
strokes during crushing. 
ponent of velocity cannot be controlled to less than 2 meters per second, for example, 
then the vertical velocity must be maintained to 5 meters per second or  less. If this con- 
trol of vertical velocity cannot be provided, then the vertical velocity must be increased 
to at least 13 meters per second and either a larger stroke or  1arge.r load factor accepted. 

Results are presen- 

The amount of horizontal 

However,, the curve clearly shows that if the horizontal com- 

An example of the effect the horizontal and vertical velocity components have on 
the required landing gear diameter is shown in Figure 8. 
which must be paid in increased landing gear size as the initial velocity components are 
increased. If the engines used for descent to the lunar surface can operate until the 
vehicle has sensed contact with the surface, then the initial touchdown velocity can be 
small. However, if  engine cutoff is necessary before contact in order to avoid possible 
unfavorable interaction, the subsequent free fall will increase the initial touchdown 
velocity. 

Tliese results show the penalty 

Another method of providing stability, instead of simply increasing the landing 
gear spread, is by the use of stabilization rockets. 
rocket motors w e r e  investigated. 
foot. 
load directed downward through the center of gravity. 
of requiring only one stabilization rocket motor. 

Two methods of employment of the 
One method w a s  to locate a rocket motor at each 

The other method consisted of mounting a single rocket motor on top of the pay- 
This method has the advantage 

For a downhill case, corresponding to an initial horizontal velocity away from the 
hill, the vehicle will contact the lunar surface and rotate about the uphill legs until the 
downhill legs contact the surface. 
the subsequent rotation about the downhill legs. If rockets are mounted on each foot 
(directed downward), the rocket motors are ignited on the uphill legs when the downhill 
legs make contact. In this analysis the vehicle's attitude angle at touchdown is consid- 
ered to be less than the lunar slope encountered so that the first legs to sense contact 
will  be the uphill legs and the opposite legs are the downhill legs. 

At this point, the rocket motor is ignited which resists 

For  the uphill case, corresponding to a horizontal velocity toward the hill, no 
rocket motor would ignite to resist the uphill rotation. However, the initial vertical 
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velocity acts to resist  any uphill rotation so that this case is not critical. 

An example of the use of a stabilization rocket is shown in Figure 9. The con- 
figuration has a landing gear diameter of 600 inches. A thrust of 46,000 pounds with a 
burning time of 0. 5 second will stop the vehicle's tumbling motion with a stability margin 
of 2 degrees. Higher thrust motors of essentially constant total impulse will provide 
larger margins of stability. Computations were also performed for this configuration 
with a motor at each foot. For  this case a thrust of 11,500 pounds with a burning time 
of 0.5 second also provides a stable touchdown with a stability margin of 2 degrees. 
From these results it appears that about 23,000 pound-seconds total impulse is required 
for this vehicle, whether it is provided with a single motor o r  divided into a motor at 
each foot. 

A single motor of this size would require only about 100 pounds of propellant and 
a total motor weight of about 150 pounds. Since this vehicle would require a landing gear 
diameter of over 900 inches without the stabilization rocket, it appears that considerable 
savings in weight could be realized by reducing the diameter to 600 inches and employing 
the stabilization rocket motor. 

The uphill stability has been determined for this configuration and is presented 
in Figure I O .  
rocket does not ignite since the rocket ignition scheme is based upon downhill leg contact. 
A s  may be seen, however, the uphill case is not critical. Horizontal velocity toward 
the hill of about 3 meters per  second can be tolerated even for no vertical velocity com- 
ponent. 

Although the stabilization rocket is present, for uphill rotation the 

Since a horizontal velocity toward a hill can be considered to be a tangential com- 
ponent of less magnitude along the hill together with a normal velocity component, it 
would be expected that a lunar slope of zero would be the most critical "uphill" case 
since the tangential velocity would be maximum and the normal velocity would be zero. 
A s  may be seen, however, the horizontal velocity which can be tolerated is still about 
3 meters per second (with no vertical velocity component) when the slope is made zero. 
It may also be seen that an increase of the initial vehicle attitude to 5 degrees, together 
with an initial attitude rate of 5 degrees per  second, does not seriously affect the uphill 
stability. The configuration, thus stable uphill, will begin rotating downhill. Tumbling 
downhill is prevented by the ignition of the stabilization rocket when the downhill legs 
make contact. 

A logistic vehicle configuration with a stabilization rocket could be used for the 
initial flights where lunar slopes of up to 30 degrees ( o r  perhaps greater) might be 
encountered. At some later time, if a more favorable landing area can be specified 
which has less slope, the stabilization rocket can be removed and the weight saved used 
for additional logistic material. This configuration corresponds to a landing gear ratio 
of 0.744. As seen from Figure 5, this configuration is stable without the stabilization 
rocket for lunar slopes of up to 10 degrees. 

10 



The effect of displacement of the vehicle's center of gravity from the longitudinal 
axis is shown for a typical vehicle in Figure 11. 
the moment a rm of the uphill leg forces was increased, while the restoring moment a rm 
decreased for the downhill legs. 

The displacement was made such that 

The effect of load factor on the required landing gear diameter is shown in 
Figure 12. The original height to the center of gravity (before leg deflection) has been 
made a function of the load factor in order to compensate for the increased stroke with 
decreased load factor. The same clearance is thus provided after stroking for the 
configurations landing on a level surface with all legs contacting simultaneously. 

For the three-leg configuration, the landing is on one uphill leg first ,  free flight 
after crushing, and then on two downhill legs. 
six times more than the uphill leg. 
legs, free flight after crushing, and then on two downhill legs. 
deflect between two and three times more than the uphill legs. 
lands on one leg, goes into free flight after crushing, and then lands on the other four 
legs almost simultaneously. 
the single uphill leg. 
a fraction of a second, the friction forces acting upon these legs cause significant in- 
crease in the vehicle's angular rotation. The diameter required for stable touchdown is 
considerably larger than would be required if  the middle legs did not contact the surface. 
The six-leg configuration lands on two legs, goes into free flight after crushing, and 
then lands on the other four legs almost simultaneously. 
legs is about three to four times larger than the two uphill legs. 
lect about the same as the uphill legs. 
13 through 16. 

The downhill legs deflect approximately 
For the four-leg vehicle, the landing is on two uphill 

The downhill legs 
The five-leg vehicle 

The two downhill legs deflect about three times more than 
Although the two middle legs are  in contact with the surface only 

Deflection of the two downhill 
The middle legs def- 

Leg deflections obtained are  shown in Figures 

Although the touchdown dynamics program was not developed for application to 

After the uphill leg or  legs impact and the vehicle 
five- o r  six-legged vehicles, analysis of these vehicles was possible because of the free 
flight nature of part of the motion. 
goes into free flight, the run is stopped, and values are  inserted which represent the 
middle legs for the remainder of the motion. 
uphill legs, middle legs, and downhill legs are not all in contact with the surface simul- 
taneously. 

This technique can be used a s  long as the 

One of the most interesting results is that the six-leg configurations require a 
slightly larger landing gear diameter than the five-leg configurations. 
obtained for all the deceleration load factors considered. 
obvious. 
acceleration than the five-leg vehicle. It also goes into free flight somewhat sooner 
with a slightly higher rate of rotation. However, as the middle and downhill legs contact 
the surface, the unstabilizing effect of the two middle legs is larger for.the five-legvehicle 
than for the six-leg vehicle. 

This result was 
The reasons for this are not 

The six-leg vehicle initially contacts on two legs producing a larger angular 

This is because the crushing force in each leg is larger 



by a factor of I. 2 resulting in a larger force vector which also acts through a longer 
moment arm. As a result the rotational rate of the five-leg vehicle increases more 
rapidly so  that the middle legs remain in contact with the surface for less time. 
fore the middle legs for the five-leg vehicle crush for a smaller stroke and absorb less 
energy. Thus as the middle legs leave the surface, the two downhill legs must remove 
the remaining energy before the vehicle tumbles. 
vehicle crush for a longer stroke , the component of velocity normal to the surface (at 
the instant the middle legs leave the surface) is less than for the five-leg vehicle. A s  
a result less time is needed to change the normal velocity from a value toward the sur- 
face to a value away from the surface which is compatible with rigid body rotation. 
Thus the downhill legs for the six-leg vehicle crush for less time and reduce the rota- 
tional rate by a smaller amount. 
rotation on the two downhill legs with a slightly higher rotational rate and therefore 
greater tendency to tumble. 

There- 

Because the middle legs of the six-leg 

The six-leg vehicle, therefore, begins a rigid body 

An example of how the energy is absorbed by the crushing and sliding action has 
been obtained for a typical vehicle. Initial and final positions of the vehicle are shown 
in Figure 17 for the set of parameters listed, 

The vehicle first impacts on the uphill leg and begins to crush and slide. Sliding 
of the foot stops in about 0.01 second while crushing continues for over 0.10 second 
until the vehicle gains sufficient rotational rate to cause the foot to leave the surface. 
The vehicle remains in free flight for almost I. 0 second until the downhill legs contact 
the surface and begin to crush and slide. At 0.008 second after the downhill legs begin 
crushing, the middle legs also contact the surface. 
about 0.014 second after contact. The middle legs stop crushing and l i f t  off the surface 
about 0.04 second after their initial contact. 
0. 175 second after their initial contact, but continue to slide for another 2.6 seconds. 
The vehicle then rotates as a rigid body about the downhill legs for about 0.85 second 
until the rotation toward tumbling stops and the vehicle is in the final position shown in 
Figure 17. 

The middle legs stop sliding 

The downhill legs stop crushing about 

Total time elapsed from the initial contact is about 4.7 seconds. 

The initial potential energy based on the reference plane shown in Figure 17 is 

( P E ) o  = W (Ho + d tan 0)  = 316,790 ft-lb. 

The initial kinetic energy is 

1 
( K E ) o  = y m  (Vv2 + V 2, = 247,570 ft-lb. H 

Final potential energy is 

(PE) = WH = 165,310 ft-lb. 
f f 
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and the final kinetic energy is zero as the rotation comes to a stop. The difference in 
initial and final energy then is 399,050 ft-lb and should equal the work done by sliding 
and crushing. While the crushing force during crushing is constant in this analysis so 
that the work done during crushing is simply the crushing force times the stroke, the 
work done during sliding is computed by 

Ws = s F T b  dt. 

The work done during crushing and sliding for the example considered is listed below: 

Work ft-lb Per cent of Total 

Uphill Leg Crushing 46,360 11. 5 
Middle Legs Crushing 12,640 3. I 

Uphill Foot Sliding 650 0. 2 
Middle Legs Sliding 5,800 1 . 4  

Total 402,900 100.0 

Downhill Legs Crushing 279,520 69. 4 

Downhill Legs Sliding 57,930 14. 4 

The work done thus agrees with the difference between initial and final energy to within 
one per  cent. 

CONCLUDING REMARKS 

A lunar logistic vehicle capable of stable touchdown on lunar slopes of up to 

Reduction of either the lunar slope o r  coefficient of friction significantly 
30 degrees with a high coefficient of friction will require a relatively large landing gear 
diameter. 
reduces the landing gear diameter required for stability. Reduction of lunar slope from 
30 degrees to 10 degrees has been shown to decrease the landing gear ratio required 
by 0.4 corresponding to a reduction in landing gear diameter of about 300 inches. 
Reduction of the coefficient of friction from I. 00 to 0. 60 results in a similar significant 
reduction of the required landing gear diameter. 

The use of a stabilization rocket motor mounted on top of the payload and directed 
downward through the vehicle's center of gravity is very effective in obtaining touchdown 
stability under severe conditions of lunar slope and friction. 
reduces the landing gear diameter required. A motor with a total impulse of only 23,000 
pound-seconds can reduce the required landing gear diameter by over 300 inches. 

Such a motor significantly 

The initial vertical and horizontal components of velocity have a strong effect 
on the landing gear diameter required. Increase of either velocity component by one 
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meter per second can increase the required lan'ding gear diameter by 30 to 50 inches. 

Variations in the height of the center of gravity result in about 30 inches increase 
in the landing gear diameter for 10 inches increase in height of center of gravity. A 
displacement of 10 inches of the center of gravity from the longitudinal axis requires 
about 20 inches increase in the landing gear diameter. A change of the radius of gyra- 
tion from 7 feet to 9 feet requires about i o  to 25 inches increase in landing gear diam- . 

e'ter. 

The landing gear diameter required for the three-legged vehicle is considerably 
larger than for the four-legged configuration. Some additional reduction in gear diam- 
eter is achieved with the use of five legs, but the six-legged vehicle requires a slightly 
larger landing gear than the five-legged vehicle. 

W i d  an increase in the initial height to the center of gravity for a decrease in 
the designed load factor, the required landing gear diameter increases with decreasing 
load factor. Thus, based on the same clearance between the vehicle and lunar surface 
after stroking, the landing gear diameter is increased with decreasing load factor. 

14 
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